

ELIZADE UNIVERSITY ILARA-MOKIN ONDO STATE

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

2nd SEMESTER EXAMINATION

2017 / 2018 ACADEMIC SESSION

COURSE CODE: CSC 420

COURSE TITLE: Theory of Automata and Computing

COURSE LEADER: Dr. K. Agbele

DURATION: 2 Hours

HOD's SIGNATURE

Am

INSTRUCTION:

Candidates should answer any FOUR (4) Questions.

Students are warned that possession of any unauthorized materials in an examination is a serious assessment offence

Students are permitted to use ONLY a scientific calculator.

- 1(a) What is an automaton? List and explain the types of Automaton.
- (b) Explain the following components of a Finite Machine (i) Input (ii) Return (iii) State (iv)

Start State (v) Accepting State (vi) Rejecting State (viii) Dead State (viii) Transition

- (c) When is a string accepted by a Non-Finite State Automaton (NFA)?
- (d) List five applications of Finite Machine

(15 marks)

- 2. (a) Given $\Sigma = \{a, b\}$, construct a DFA that shall recognize the language $L = \{b^m a b^n : m, n > 0\}.$
- (b) Determine a Finite State Automaton (FA), M, accepting L, where $L = \{w \in \{0,1\}: \text{Every } 0 \text{ in where } 1 \text{ is } 1 \text{ in where } 1 \text{ in } 1 \text{ in } 2 \text{ in }$ 0 in w has a 1 immediately to its right.
- (c) Construct a DFA which recognizes the set of all strings on $\Sigma = \{a,b\}$, starting with the prefix 'ab'.
- (d) Construct a FA accepting all string over {0,1} having even number of 0's and even (15 marks) number of 1's.
- 3. (a) Design a DFA, M which accepts the language $L(M) = \{w \in \{a,b\}^*:_{\mathsf{W} \text{ does not }} \{a,b\}^*:_{\mathsf{W} \text{ does not }}$ contain three consecutive b's}.

Let M = {Q,
$$\Sigma$$
, δ , q_{o_i} F}

Where:

$$Q = \{ q_0, q_1, q_2, q_3 \},$$

$$\Sigma = \{a,b\},$$

qo is the initial state,

 $F = \{q_0, q_1, q_2, \}$ are final states

and δ is defined as follows

Initial state	Symbol	Final state	
q.	а	q _o	101
q _o	b	q ₁	
q ₁	а	q ₀	
q ₁	b	q ₂	
q ₂	а	q _o	
q ₂	b	q ₃	
q ₃	а	q ₃	
q_3	b	q ₃	

(b) Let M=($\{q_1,q_2,q_3\}$, $\{0,1\}$, $\{q_1\}$, $\{q_3\}$ is a NDFA where δ is given by

$$\delta(q_1, 0) = \{q_2, q_3\}$$
 $\delta(q_1, 1) = \{q_1\}$

$$\delta(q_2, 0) = \{q_1, q_2\}$$
 $\delta(q_2, 1) = \{\Phi\}$

$$\delta(q_3, 0) = \{q_2\}$$
 $\delta(q_3, 1) = \{q_1, q_2\}$

- (i) Construct an equivalent DFA and draw the transition diagram
- (ii) Check whether the string '011010' is accepted by DFA and NFA

(c) Obtain the state table diagram and state transition diagram (DFA Schematic) of the finite state Automaton M = {Q, S, δ , q_o , F}, where Q = { q_o , q_1 , q_2 , q_3 }, S={a,b}, q_o is the initial state, F is the final state with transition defined by

$$\begin{array}{lll} \delta \; (q_{o},\, a) = q_{2} & \delta \; (q_{3},\, a) = q_{1} \; \; \delta \; (q_{2},\, b) = q_{3} \\ \delta \; (q_{1},\, a) = q_{3} & \delta \; (q_{o},\, b) = q_{1} \; \; \delta \; (q_{3},\, b) = q_{2} \\ \delta \; (q_{2},\, a) = q_{o} & \delta \; (q_{1},\, b) = q_{0} \end{array} \tag{15 marks}$$

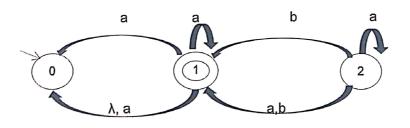
- 4. (a) Consider the alphabet $\Sigma = \{a, b\}$. Is there any language L on this alphabet for which $(L)^* = L^*$? If yes, give an example of such a language; if no, explain why.
 - (b) Consider the following two languages on the alphabet $\Sigma = \{a, b\}$:

$$L_1 = \{a^n : n \gg 1\}; L_2 = \{b^n : n \gg 1\}.$$

Describe the languages below, using either the set notation or precise definition in English.

$$L_3 = L_1^*$$
 , $L_4 = L_1$, $L_5 = L_1 U L_2$, $L_6 = L_1 L_2$
 $L_7 = (L_1^2)(L_2^2)(L_1^2)$, $L_8 = (L_1 U L_2)^*$, $L_9 = (L_1 L_2)^*$

- (c) For each of the following three languages on $\Sigma = \{a, b\}$, draw a deterministic finite automaton that accepts it:
- (i) All strings that have no b's (note that it includes λ)
- (ii) All strings with at least two a's and any number of b's.
- (iii) All strings with at most two a's and any number of b's. (15 marks)
- 5. (a) Consider the following sets of integer numbers:


$$S_1 = \{4,5,6\},$$

$$S_2 = \{i: i \text{ is even}\}$$

$$S_3 = \{i: i \text{ is divisible by 3}\}.$$

For each set, specify its elements and determine whether it is finite or infinite.

- (bi) Draw an example of a graph that has six vertices and six edges. Mark all simple cycles in your graph.
- (bii) Draw an example of a tree that has seven vertices, five of which are leaves. How many edges are in your tree.
- (c For the alphabet $\Sigma = \{a, b\}$, draw a deterministic finite accepter that is equivalent to the following accepter:

(15 marks)

(d) Explain the following terms with examples where applicable: (i) Alphabet (ii) Strings (iii) Concatenation (iv) length of a string (v) Empty strings (vi) Positive Closure (vii) Star Closure